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Abstract
Video Question Answering (Video QA) is a pow-
erful testbed to develop new AI capabilities. This
task necessitates learning to reason about objects,
relations, and events across visual and linguistic do-
mains in space-time. High-level reasoning demands
lifting from associative visual pattern recognition to
symbol-like manipulation over objects, their behav-
ior and interactions. Toward reaching this goal we
propose an object-oriented reasoning approach in
that video is abstracted as a dynamic stream of inter-
acting objects. At each stage of the video event flow,
these objects interact with each other, and their inter-
actions are reasoned about with respect to the query
and under the overall context of a video. This mecha-
nism is materialized into a family of general-purpose
neural units and their multi-level architecture called
Hierarchical Object-oriented Spatio-Temporal Rea-
soning (HOSTR) networks. This neural model main-
tains the objects’ consistent lifelines in the form
of a hierarchically nested spatio-temporal graph.
Within this graph, the dynamic interactive object-
oriented representations are built up along the video
sequence, hierarchically abstracted in a bottom-up
manner, and converge toward the key information
for the correct answer. The method is evaluated on
multiple major Video QA datasets and establishes
new state-of-the-arts in these tasks. Analysis into
the model’s behavior indicates that object-oriented
reasoning is a reliable, interpretable and efficient
approach to Video QA.

1 Introduction
Much of the recent impressive progress of AI can be attributed
to the availability of suitable large-scale testbeds. A powerful
testbed – largely under-explored – is Video Question Answer-
ing (Video QA). This task demands a wide range of cognitive
capabilities including learning and reasoning about objects
and dynamic relations in space-time, in both visual and lin-
guistic domains. A major challenge of reasoning over video
is extracting question-relevant high-level facts from low-level
moving pixels over an extended period of time. These facts
include objects, their motion profiles, actions, interactions,

Q: who slices a soda 
bottle with a sword? 

A: the man

Figure 1: The key to Video QA is the effective relational reasoning
on objects with their temporal lifelines (below sequences) interleaved
with spatial interactions (upper graph) under the context set in the
video and the perspective provided by the query. This object-oriented
spatio-temporal reasoning is the main theme of this work.

events, and consequences distributed in space-time. Another
challenge is to learn the long-term temporal relation of visual
objects conditioning on the guidance clues from the ques-
tion – effectively bridging the semantic gulf between the two
domains. Finally, learning to reason from relational data is
an open problem on its own, as it pushes the boundary of
learning from simple one-step classification to dynamically
construct question-specific computational graphs that realize
the iterative reasoning process.

A highly plausible path to tackle these challenges is via
object-centric learning since objects are fundamental to cogni-
tion [Spelke and Kinzler, 2007]. Objects pave the way towards
more human-like reasoning capability and symbolic comput-
ing [Lake et al., 2017; Spelke and Kinzler, 2007]. Unlike
objects in static images, objects in video have unique evolving
lives throughout space-time. As object lives throughout the
video, it changes its appearance and position, and interacts
with other objects at arbitrary time. When observed in the
videos, all these behaviors play out on top of a background of
rich context of the video scene. Furthermore, in the question
answering setting, these object-oriented information must be
considered from the specific view point set by the linguistic
query. With these principles, we pinpoint the key to Video QA
to be the effective high-level relational reasoning of spatio-
temporal objects under the video context and the perspective
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provided by the query (see Fig. 1). This is challenging for
the complexity of the video spatio-temporal structure and the
cross-domain compatibility gap between linguistic query and
visual objects.

Toward such challenge we design a general-purpose neu-
ral unit called Object-oriented Spatio-Temporal Reasoning
(OSTR) that operates on a set of video object sequences, a con-
textual video feature, and an external linguistic query. OSTR
models object lifelong interactions and returns a summary
representation in the form of a singular set of objects. The
specialties of OSTR are in the partitioning of intra-object
temporal aggregation and inter-object spatial interaction that
leads to the efficiency of the reasoning process. Being flexi-
ble and generic, OSTR units are suitable building blocks for
constructing powerful reasoning models.

For Video QA problem, we use OSTR units to build
up Hierarchical Object-oriented Spatio-Temporal Reasoning
(HOSTR) model. The network consists of OSTR units ar-
ranged in layers corresponding to the levels of video temporal
structure. At each level, HOSTR finds local object interac-
tions and summarizes them toward a higher-level, longer-term
representation with the guidance of the linguistic query.

HOSTR stands out with its authentic and explicit modeling
of video objects leading to the effective and interpretable rea-
soning process. The hierarchical architecture also allows the
model to efficiently scale to a wider range of video formats
and lengths. These advantages are demonstrated in a compre-
hensive set of experiments on multiple major Video QA tasks
and datasets.

In summary, this paper makes three major contributions: (1)
A semantic-rich object-oriented representation of videos that
paves the way for spatio-temporal reasoning (2) A general-
purpose neural reasoning unit with dynamic object interactions
per context and query; and (3) A hierarchical network that
produces reliable and interpretable video question answering.

2 Related Work
Video QA has been developed on top of traditional video
analysis schemes such as recurrent networks of frame features
[Zhao et al., 2019] or 3D convolutional operators [Tran et al.,
2018]. Video representations are then fused with or gated by
the linguistic query through co-attention [Jang et al., 2017;
Ye et al., 2017], hierarchical attention [Liang et al., 2018;
Zhao et al., 2018], and memory networks [Kim et al., 2017;
Wang et al., 2019]. More recent works advance the field by
exploiting hierarchical video structure [Le et al., 2020a] or
separate reasoning out of representation learning [Le et al.,
2020b]. A share feature between these works is considering
the whole video frames or segments as the unit component
of reasoning. In contrast, our work make a step further by
using detail objects from the video as primitive constructs for
reasoning.

Object-centric Video Representation inherits the modern
capability of object detection on images [Desta et al., 2018]
and continuous tracking through temporal consistency [Wojke
et al., 2017]. Tracked objects form tubelets [Kalogeiton et
al., 2017] whose representation contributes to breakthroughs
in action detection [Xie et al., 2018] and event segmentation

[Chao et al., 2018]. For tasks that require abstract reasoning,
the connection between objects beyond temporal object perma-
nence can be established through relation networks [Baradel
et al., 2018]. The concurrence of objects’ 2D spatial- and
1D temporal- relations naturally forms a 3D spatio-temporal
graphs [Wang and Gupta, 2018]. This graph can be repre-
sented as either a single flattened one where all parts connect
together [Zeng et al., 2019], or separated spatial- and temporal-
graphs [Pan et al., 2020]. They can also be approximated as a
dynamic graph where objects live through the temporal axis
of the video while their properties and connection evolve [Jain
et al., 2016].

Object-based Video QA is still in infancy. The works in
[Yang et al., 2020] and [Huang et al., 2020] extract object
features and feed them to generic relational engines without
prior structure of reasoning through space-time. At the other
extreme, detected objects are used to scaffold the symbolic
reasoning computation graph [Yi et al., 2020] which is explicit
but limited in flexibility and cannot recover from object extrac-
tion errors. Our work is a major step toward the object-centric
reasoning with the balance between explicitness and flexibility.
Here video objects serve as active agents which build up and
adjust their interactions dynamically in the spatio-temporal
space as instructed by the linguistic query.

3 Method
3.1 Problem Definition
Given a video V and linguistic question q, our goal is to learn
a mapping function Fθ(.) that returns a correct answer ā from
an answer set A as follows:

ā = arg max
a∈A

Fθ (a | q,V) . (1)

In this paper, a video V is abstracted as a collection of
object sequences tracked in space and time. Function Fθ is
designed to have the form of a hierarchical object-oriented net-
work that takes the object sequences, modulates them with the
overall video context, dynamically infers object interactions as
instructed by the question q so that key information regarding
a arises from the mix. This object-oriented representation is
presented next in Sec. 3.2, followed by Sec. 3.3 describing the
key computation unit and Sec. 3.4 the resulting model.

3.2 Data Representation
Video as a Set of Object Sequences
Different from most of the prominent VideoQA methods [Jang
et al., 2017; Gao et al., 2018; Le et al., 2020a] where videos
are represented by frame features, we break down a video of
length L into a list of N object sequences O = {on,t}N,Ln=1,t=1

constructed by chaining corresponding objects of the same
identity n across the video. These objects are represented
by a combination of (1) appearance features (RoI pooling
features) oan,t ∈ R2048 (representing “what”); and (2) the posi-
tional features opn,t = [xmin

W , ymin

H , xmax

W , ymax

H , wW , hH ,
wh
WH ]

(“where”), with w and h are the sizes of the bounding box and
W,H are those of the video frame, respectively.

In practice, we use Faster R-CNN with ROI-pooling to
extract positional and appearance features; and DeepSort for
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multi-object tracking. We assume that the objects live from
the beginning to the end of the video. Occluded or missed
objects have their features marked with special null values
which will be specially dealt with by the model.

Joint Encoding of “What” and “Where”
Since the appearance oan,t of an object may remain relatively
stable over time while opn,t constantly changes, we must find
joint positional-appearance features of objects to make them
discriminative in both space and time. Specifically, we propose
the following multiplicative gating mechanism to construct
such features:

on,t = f1(oan,t)� f2(opn,t) ∈ Rd, (2)

where f2(opn,t) ∈ (0,1) serves as a position gate to
(softly) turn on/off the localized appearance features f1(oan,t).
We choose f1(x) = tanh (Wax+ ba) and f2(x) =
sigmoid (Wpx+ bp), where Wa and Wp are network weights
with height of d.

Along with the object sequences, we also maintain global
features of video frames which hold the information of the
background scene and possible missed objects. Specifically,
for each frame t, we form the the global features gt as the com-
bination of the frame’s appearance features (pretrained ResNet
pool5 vectors) and motion feature (pretrained ResNeXt-101)
extracted from such frame.

With these ready, the video is represented as a tuple of
object sequences On and frame-wise global features gt: V =({
On | On ∈ RL×d

}
N
n=1, {gt}

L
t=1

)
.

Linguistic Representation
We utilize a BiLSTM running on top of GloVe embedding
of the words in a query of length S to generate contextual
embeddings {es}Ss=1 for es ∈ Rd, which share the dimension
d with object features. We also maintain a global representa-
tion of the question by summarizing the two end LSTM states
qg ∈ Rd. We further use qg to drive the attention mechanism
and combine contextual words into a unified query representa-
tion q =

∑S
s=1 αses where αs = softmaxs(Wq(es � qg)).

3.3 Object-oriented Spatio-Temporal Reasoning
(OSTR)

With the videos represented as object sequences, we need to
design a scalable reasoning framework that can work natively
on the structures. Such a framework must be modular so
it is flexible to different input formats and sizes. Toward
this goal, we design a generic reasoning unit called Object-
oriented Spatio-Temporal Reasoning (OSTR) that operates
on this object-oriented structure and supports layering and
parallelism.

Algorithmically, OSTR takes as input a query representation
q, a context representation c, a set of N object sequences X =
{Xn | Xn ∈ RT×d}Nn=1 of equal length T , and individual
identities {n}. In practice, X can be a subsegment of the
whole object sequences O, and c is gathered from the frame
features gt constructed in Sec. 3.2. The output of the OSTR is
a set of object instances of the same identity.

OSTR Unit

q

c

Input object

sequences X

Temporal 
Attention

Inter-object Interaction

Temporal 
Attention

Temporal 
Attention

Output objects Y

Question 

Context

Figure 2: Object-oriented Spatio-Temporal Reasoning (OSTR) unit.
Inputs include a set of object sequences X (with identity indicated
by colors), a context c and a query q. Each object sequence is first
summarized by a temporal attention module (matching color boxes).
The inter-object S-T relations is modeled by a graph-based spatial
interaction (gray box with pink graph). OSTR unit outputs a set of
object instances {yn} with object IDs corresponding to those in the
input sequences.

Across the space-time domains, real-world objects have dis-
tinctive properties (appearance, position, etc.) and behaviors
(motion, deformation, etc.) throughout their lives. Meanwhile,
different objects living in the same period can interact with
each other. The OSTR closely reflects this nature by con-
taining the two main components: (1) Intra-object temporal
attention and (2) Inter-object interaction (see Fig. 2).

Intra-object Temporal Attention
The goal of the temporal attention module is to produce
a query-specific summary of each object sequence Xn =

{xn,t}Tt=1 into a single vector zn. The attention weights are
driven by the query q to reflect the fact that the relevance to the
query varies across the sequence. In details, the summarized
vector zn is calculated by

zn = temporal attention(Xn) := γ ∗
T∑
t=1

βtxn,t,where (3)

βt = softmaxt (Wa ((Wqq + bq)� (Wxxt + bx))) , (4)

where � is the Hadamard product, {Wa,Wq,Wx} are learn-
able weights, γ is a binary mask vector to handle the null
values caused by missed detections as mentioned in Sec. 3.2.

When the sequential structure is particularly strong, we can
optionally employ a BiLSTM to model the sequence. We can
then either utilize the last state of the forward LSTM and the
first state of the backward LSTM, or place attention across the
hidden states instead of object feature embeddings.

Inter-object Interaction
Fundamentally, the lifelines of object sequences are not only
described by their internal behavior through time but also by
the interactions with their neighbor objects coexisting in the
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 Whole Video 

OSTR

Input Video

Question 

Context

clip 2

OSTR

OSTR

...
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...

Object
sequences O

Video-level
object sequences

Video-level representation Answer decoder Answer

Figure 3: The architecture of Hierarchical Object-oriented Spatio-Temporal Reasoning (HOSTR) network for Video QA. HOSTR contains
OSTR units operating at two levels: clip-level and video-level. Clip-level OSTR units model the interaction between object chunks within a
particular clip under the modulation of the question and a clip-specific context representation. Their output objects are chained together and
further sent to a video-level OSTR to capture the long-term dependencies between the objects existing in the whole video. Finally, a classifier
taking as input the summarized output of video-level OSTR and the query is used for answer prediction.

same space. In order to represent such complex relationship,
we build a spatio-temporal computation graph to facilitate the
inter-object interactions modulated by the query q. This graph
G(Z,E) contains vertices as the summarized objects Z =
{zn}Nn=1 generated in Eq. 4, and the edges E represented by
an adjacency matrix A ∈ RN×N . A is calculated dynamically
as the query-induced correlation matrix between the objects:

an = norm (Wa([zn, zn � q])) , (5)

A = a>a. (6)
Here an is the relevance of object n w.r.t. the query q. The
norm operator is implemented as a softmax function over
objects in our implementation.

Given the graph G,we use a Graph Convolutional Network
(GCN) equipped with skip-connections to refine objects in
relation with their neighboring nodes. Starting with the initial-
ization H0 = (z1, z2, ..., zn) ∈ RN×d, the representations of
nodes are updated through a number of refinement iterations.
At iteration i, the new hidden states are calculated by:

GCNi
(
Hi−1) = W i−1

2 σ
(
AHi−1W i−1

1 + bi−1
)

Hi = σ
(
Hi−1 + GCNi

(
Hi−1)) , (7)

where σ (·) is a nonlinear activation (ELU in our implemen-
tation). After a fixed number of GCN iterations, the hidden
states of the final layer are gathered as Himax = {hn}Nn=1.

To recover the underlying background scene information
and compensate for possible undetected objects, we augment
the object representations with the global context c:

yn = MLP ([hn; c]) . (8)
These vectors line up to form the final output of the OSTR
unit as a set of objects Y = {yn}Nn=1 .

3.4 Hierarchical Object-oriented Spatio-Temporal
Reasoning (HOSTR)

Even though the partitioning of temporal and spatial interac-
tion in OSTR brings the benefits of efficiency and modularity,
such separated treatment can cause the loss of spatio-temporal
information, especially with long sequences. This limitation
prevents us from using OSTR directly on the full video ob-
ject sequences. To allow temporal and spatial reasonings to
cooperate along the way, we break down a long video into
multiple short (overlapping) clips and impose an hierarchical
structure on top. With such division, the two types of interac-
tions can be combined and interleaved across clips and allow
full spatio-temrporal reasoning.

Based on this motive, we design a novel hierarchical struc-
ture called Hierarchical Object-oriented Spatio-Temporal Rea-
soning (HOSTR) that follows the video multi-level structure
and utilizes the OSTR units as building blocks. Our architec-
ture shares the design philosophy of hierarchical reasoning
structures with HCRN [Le et al., 2020a] as well as the other
general neural building blocks such as ResNet and Incep-
tionNet. Thanks to the genericity of OSTR, we can build a
hierachy of arbitrary depth. For concreteness, we present
here a two-layer HOSTR corresponding to the video structure:
clip-level and video-level (see Fig. 3).

In particular, we first split all object sequences O con-
structed in Sec. 3.2 into K equal-sized chunks C =
{C1, C2, ..., CK} corresponding to the video clips, each of
T frames. As the result, each chunk includes the object sub-
sequences Ck = {on,t}N,tk+Tn=1,t=tk

, where on,t are the object
features extracted in Eq. 2, and tk is the starting time of clip k.

Similarly, we divide the sequence of global frame features
{gt}Lt=1 into K parts corresponding to the video clips. The
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global context ck for clip k is derived from each part by an
identical operation with the temporal attention for objects in
Eqs. 3,4: ck = temporal attention

(
{gt}tk+Tt=tk

)
.

Clip-level OSTR units work on each of these subsequences
Ck, context cclip

k and query q, and generate the clip-level repre-
sentation of the chunk yclip

k ∈ RN×d:

yclip
k = OSTR(Ck, c

clip
k , q). (9)

Outputs of the K clip-level OSTRs are K different sets of
objects yclip

k = {yn,k}Nn=1 whose identities n were maintained.
Therefore, we can easily chain these objects of the same iden-
tity from different clips together to form the video-level se-

quence of objects Y clip =
{
yclip
n,k

}N,K
n=1,k=1

.

At the video level, we have a single OSTR unit that
takes in the object sequence Y clip, query q, and video-
level context cvid. The context cvid is again derived from
the clip-level context cclip

k by temporal attention: cvid =

temporal attention
({

cclip
k

}K
k=1

)
.

The video-level OSTR models the long-term relationships
between input object sequences in the whole video:

Y vid = OSTR(Y clip, cvid, q).

The output of this unit is a set of N vectors Y vid = {yvid
n |

yvid
n ∈ Rd}Nn=1. The set is further summarized using an atten-

tion mechanism using the query q into the final representation
vector r:

δn = softmaxn
(
MLP

[
Wyy

vid
n ;Wyy

vid
n �Wcq

])
, (10)

r =
N∑
n=1

δny
vid
n ∈ Rd. (11)

3.5 Answer Decoders
We follow the common settings for answer decoders (e.g., see
[Jang et al., 2017]) which combine the final representation r
with the query q using an MLP followed by a softmax to rank
the possible answer choices. More details about the answer
decoders per question types are available in the supplemental
material. We use the cross-entropy as the loss function to train-
ing the model from end to end for all tasks except counting,
where Mean Square Error is used.

4 Experiments
4.1 Datasets
We evaluate our proposed HOSTR on the three public video
QA benchmarks, namely, TGIF-QA [Jang et al., 2017],
MSVD-QA [Xu et al., 2017] and MSRVTT-QA [Xu et al.,
2017]. More details are as follows.

MSVD-QA consists of 50,505 QA pairs annotated from
1,970 short video clips. The dataset covers five question types:
What, Who, How, When, and Where, of which 61% of the QA
pairs for training, 13% for validation and 26% for testing.

MSRVTT-QA contains 10K real videos (65% for training,
5% for validation, and 30% for testing) with more than 243K

Model Test Accuracy (%)
MSVD-QA MSRVTT-QA

ST-VQA 31.3 30.9
Co-Mem 31.7 32.0
AMU 32.0 32.5
HME 33.7 33.0
HCRN 36.1 35.4
HOSTR 39.4 35.9

Table 1: Experimental results on MSVD-QA and MSRVTT-QA.

Model TGIF-QA
Action↑ Trans.↑ Frame↑ Count↓

ST-TP (R+C) 62.9 69.4 49.5 4.32
Co-Mem (R+F) 68.2 74.3 51.5 4.10
PSAC (R) 70.4 76.9 55.7 4.27
HME (R+C) 73.9 77.8 53.8 4.02
HCRN (R) 70.8 79.8 56.4 4.38
HCRN (R+F) 75.0 81.4 55.9 3.82
HOSTR (R) 75.6 82.1 58.2 4.13
HOSTR (R+F) 75.0 83.0 58.0 3.65

Table 2: Experimental results on TGIF-QA dataset. R: ResNet, F:
Flow, and C: C3D, respectively. MSE is used as the evaluation metric
for count while accuracy is used for others.

question-answer pairs. Similar to MSVD-QA, questions are
of five types: What, Who, How, When, and Where.

TGIF-QA is one of the largest Video QA datasets with 72K
animated GIFs and 120K question-answer pairs. Questions
cover four tasks - Action, Event Transition, FrameQA, Count.
We refer readers to the supplemental material for the dataset
description and statistics.

4.2 Comparison Against SOTAs
Implementation: We use Faster R-CNN1 for frame-wise ob-
ject detection. The number of object sequences per video for
MSVD-QA , MSRVTT-QA is 40 and TGIF-QA is 50. We
embed question words into 300-D vectors and initialize them
with GloVe during training. Default settings are with 6 GCN
layers for each OSTR unit. The feature dimension d is set to
be 512 in all sub-networks.

We compare the performance of HOSTR against recent
state-of-the-art (SOTA) methods on all three datasets. Prior
results are taken from [Le et al., 2020a].

MSVD-QA and MSRVTT-QA: Table 1 shows detailed
comparisons on MSVD-QA and MSRVTT-QA datasets. It
is clear that our proposed method consistently outperforms
all SOTA models. Specifically, we significantly improve per-
formance on the MSVD-QA by 3.3 absolute points while the
improvement on the MSRVTT-QA is more modest. As videos
in the MSRVTT-QA are much longer (3 times longer than
those in MSVD-QA) and contain more complicated interac-
tion, it might require a larger number of input object sequences
than what in our experiments (40 object sequences).

TGIF-QA: Table 2 presents the results on TGIF-QA
dataset. As pointed out in [Le et al., 2020a], short-term motion
features are helpful for action task while long-term motion

1https://github.com/airsplay/py-bottom-up-attention
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features are crucial for event transition and count tasks. Hence,
we provide two variants of our model: HOSTR (R) makes use
of ResNet features as the context information for OSTR units;
and HOSTR (R+F) makes use of the combination of ResNet
features and motion features (extracted by ResNeXt, the same
as in HCRN) as the context representation. HOSTR (R+F)
shows exceptional performance on tasks related to motion.
Note that we only use the context modulation at the video
level to concentrate on the long-term motion. Even without
the use of motion features, HOSTR (R) consistently shows
more favorable performance than existing works.

The quantitative results prove the effectiveness of the object-
oriented reasoning compared to the prior approaches of totally
relying on frame-level features. Incorporating the motion
features as context information also shows the flexibility of
the design, suggesting that HOSTR can leverage a variety of
input features and has the potentials to apply to other problems.

4.3 Ablation Studies
To provide more insight about our model, we examine the
contributions of different design components to the model’s
performance on the MSVD-QA dataset. We detail the results
in Table 3. As shown, intra-object temporal attention seems to
be more effective in summarizing the input object sequences to
work with relational reasoning than BiLSTM. We hypothesize
that it is due to the selective nature of the attention mechanism
– it keeps only information relevant to the query.

As for the inter-object interaction, increasing the number
of GCN layers up to 6 generally improves the performance.
It gradually degrades when we stack more layers due to the
gradient vanishing. The ablation study also points out the sig-
nificance of the contextual representation as the performance
steeply drops from 39.4 to 37.8 without them.

Last but not least, we conduct two experiments to demon-
strate the significance of video hierarchical modeling. “1-level
hierarchy” refers to when we replace all clip-level OSTRs
with the global average pooling operation to summarize each
object sequence into a vector while keeping the OSTR unit
at the video level. “1.5-level hierarchy”, on the other hand,
refers to when we use an average pooling operation at the
video level while keeping the clip-level the same as in our
HOSTR. Empirically, it shows that going deeper in hierarchy
consistently improves performance on this dataset. The hierar-
chy may have greater effects in handling longer videos such
as those in the MSRVTT-QA and TGIF-QA datasets.

4.4 Qualitative Analysis
To provide more analysis on the behavior of HOSTR in prac-
tice, we visualize the spatio-temporal graph formed during
HOSTR operation on a sample in MSVD-QA dataset. In
Fig. 4, the spatio-temporal graph of the two most important
clips (judged by the temporal attention scores) are visualized
in order of their appearance in the video’s timeline. Blue
boxes indicate the six objects with highest edge weights (row
summation of the adjacency matrix A calculated in Eq.6). The
red lines indicates the most prominent edges of the graph with
intensity scaled to the edge strength.

In this example, HOSTR attended mostly on the objects
related to the concepts relevant to answer the question (the

Model Test Acc. (%)
Default config. (*) 39.4
Temporal attention (TA)

Attention at both levels 39.4
BiLSTM at clip, TA at video level 39.4
BiLSTM at both levels 38.8

Inter-object Interaction
SR with 1 GCN layer 38.3
SR with 4 GCN layers 38.7
SR with 8 GCN layers 39.0

Contextual representation
w/o contextual representation 37.8

Hierarchy
1-level hierarchy 38.0
1.5-level hierarchy 38.7

Table 3: Ablation results on MSVD-QA dataset. Default config. (*):
6 GCN layers, Attention at clip & BiLSTM at video level

Q: Who played on the grass with a dog and a ball?    A: Girl 

clip 5 clip 10

Figure 4: A visualization of the spatio-temporal graph formed in
HOSTR. The six most attended objects in each clip are drawn in blue
bounding boxes. Red links indicates the importances of the edges.

girl, ball and dog). Furthermore, the relationships between the
girl and her surrounding objects are the most important among
the edges, and this intuitively agrees with how human might
visually examine the scene given the question.

5 Conclusion
We presented a new object-oriented approach to Video QA
where objects living in the video are treated as the primitive
constructs. This brings us closer to symbolic reasoning, which
is arguably more human-like. To realize this high-level idea,
we introduced a general-purpose neural unit dubbed Object-
oriented Spatio-Temporal Reasoning (OSTR). The unit rea-
sons about its contextualized input – which is a set of object
sequences – as instructed by the linguistic query. It first se-
lectively transforms each sequence to an object node, then
dynamically induces links between the nodes to build a graph.
The graph enables iterative relational reasoning through col-
lective refinement of object representation, gearing toward
reaching an answer to the given query. The units are then
stacked in a hierarchy that reflects the temporal structure of a
typical video, allowing higher-order reasoning across space
and time. Our architecture establishes new state-of-the-arts on
major Video QA datasets designed for complex compositional
questions, relational, temporal reasoning. Our analysis shows
that object-oriented reasoning is a reliable, interpretable and
effective approach to Video QA.
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